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Abstract

Serial concatenation of an outer binary convolutional code with an inner TCM code over a
multidimensional Euclidean constellation through an interleaver, allows to extend the extremely
good performance of turbo codes to the case of high spectral efficiency. For constituent codes
of concatenated schemes, input/output relationships of the encoders have a strong impact on
performance; in this framework, Uniform Bit Error Property (UBEP) simplifies the design of
good encoders. We introduce a class of TCM encoders, called bit geometrically uniform (BGU)
encoders, for which the UBEP holds, and the bit error probability does not depend on the
transmitted sequence. The properties of BGU encoders prove quite useful for the design of good
serially concatenated trellis coded modulation. Performance of new concatenated codes with
spectral efficiency 2 bps/Hz, constructed by this approach, are presented, in terms of simulation

and analytical results. 'ﬁ"B[[(S Code

I. INTRODUCTION

A Euclidean-space constellation has the Uniform Error Property (UEP) if the symbol
error probability does not depend on the transmitted signal. For Geometrically Uniform
(GU) constellations [1] the Voronoi (decision) regions of the signals are all congruent and
the UEP holds. Most of the usual constellations are either GU (PSK, M-ary orthogonal
constellations, Slepian constellations, infinite lattices), or approximately GU if we neglect
boundary effects (PAM, QAM).

The notion of geometrical uniformity can be extended to Euclidean-space codes of finite
or infinite length over GU constellations [1]. Also in this case, the Voronoi regions of GU
code sequences are congruent and the symbol sequence error probability (often called error
event probability) can be computed from any signal sequence.

For most transmission systems, the bit error probability (or the frame error probability)
is a more important performance measure than the symbol sequence error probability, and
can be computed by considering the binary information sequences that must be transmit-
ted to the receiver. Association between binary information sequences and signal sequences
is provided by labelings for uncoded constellations, and by encoders for codes.

In classical coding theory, encoders are often not considered, or somehow confused with
the code; the main reason is that given a code, BER performance of various encoders
generating 1t are usually almost the same, and differences are limited to fractions of dB.
As a consequence, the attention in design is focused on the code and, usually, on its
(Hamming or Euclidean) distance properties. In this case, UEP is of great utility, because
it dramatically simplifies code performance analysis.

In some applications, however, a clear separation between codes and encoders is essential

(e.g. the concept of rotational invariance [2]), or different encoders generating the same
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code lead to significantly different performance (e.g. constituent codes of turbo codes [3],

(4]). In this case the design must be focused on the encoder/code pair.

We first extend the concept of UEP to encompass the binary information sequences,
and look for the conditions under which also the bit error probability can be computed
by considering any transmitted sequence, for example the all-zero sequence. While UEP
applies to the code, this property, which will be called uniform bit error property (UBEP)
in the following, applies to the encoder/code pair. As UEP for code design, UBEP proves

very useful for encoder design because it highly simplifies performance analysis.

We derive some conditions under which an encoder satisfies UBEP, and apply this con-
cept to the design of good serially concatenated TCM codes [5], a technique that provides
very good performance at high spectral efficiency via iterative decoding strategies. As for
all concatenated codes with interleavers, whose aim is the minimization of the bit error
probability obtained acting on the multiplicities of near neighbours, the input /output rela-
tionship of constituent encoders has a strong impact on performance, and UBEP properties
highly simplify the design of good TCM encoders.

In Section II we discuss the properties of labelings for uncoded constellations. A distance
rule is introduced, and labelings satisfying it are called bit geometrically uniform (BGU)
labelings. It is shown that a BGU labeling satisfies the UBEP, and that a 2*-signal GU
constellation admits a BGU labeling if and only if it has a generating group isomorphic
to a generating group of the Hamming space Hy.

In Section III codes with infinite length are considered; the distance rule is defined on
the code treliis. Some necessary and sufficient conditions for BGU encoders are derived:
they are simplified when abelian generating groups are involved.

In Section IV the principles of serially concatenated TCM (SCTCM) codes are briefly
recalled. A main parameter for the design of these codes is the effective free Euclidean
distance dg g of the inner TCM encoder [5], defined as the minimum Euclidean distance
between code sequences generated by information sequences that differ only by two bits.
BGU encoder properties are applied to the construction of good constituent TCM encoders

with large di.q. Performance of new good SCTCM codes are presented.

II. BIT GEOMETRICALLY UNIFORM ENCODERS FOR SIGNAL CONSTELLATIONS

A Euclidean-space constellation S C R" is a set of signals (points) in the n-dimensional

Euclidean space. Finite constellations will have cardinality M = 2* in this paper.

The Hamming space Hy is the set of all 2¥ binary k-ples. Given a finite constellation S,
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a binary labeling L[S, k] for § is a one-to-one function
E:S o H,

that associates a distinct k-bit information label E(s) to each signal s € S.

'The bit error probability with ML symbol decoding, when a signal s; is transmitted is:

P(SR = SleT = S,’),

E(s; ;
P(blST — Si) — Z wH( (SJ) + E(S ))
s k
J#e
where st and sgp are the transmitted and the received signal. The average bit error
probability over § with ML symbol decoding is:

M-

Z (blsT = s;)
Definition 1
A binary labeling E(S, k] is said to satisfy the uniform bit error property (UBEP) if the
average bit error probability obtained with mazimum likelihood (ML) symbol decoding does
not depend on the transmitted signal, i.e., P(b|sr = s;) is the same for each signal s; € S.
It follows: P(b) = P(blst = si). A

A symmetry p of a constellation S 15 an isometric permutation, i.e., a permutation of
the signals that preserves Euclidean distance. The symmetry group I'(S) is the group of
all symmetries of S. If I'(S) is transitive, i.e., T(S)(s;) = §,Vs; € S, the constellation is
called Geometrically Uniform (GU) [1]. A GU constellation has congruent Voronoi regions,
and the UEP holds [1].

A GU constellation is a good starting point for a BGU labeling; when a signal s; is
transmitted, the relative position of all possible “wrong” decoded signals s; # s; is the
same for any s;. When also the number of “wrong” bits associated by the labeling E to
s; only depends on the relative position of the pair (s,,s;), the labeling E satisfies the
UBEP.

Example 1
The 8-PSK constellation with the natural binary labeling of Figure 1 a) does not satisfy the UBEP: if
so is transmitted, three bits arc wrong if s7 is received and one bit is wrong if s; is received; if s; is

transmitted, two bits are wrong if s, is received and one bit is wrong if sy is received; o

Given a GU constellation S, consider now a generating group G C [(S), ie., a 2
element transitive subgroup of I'(S); by definition [1], we have G(s) = S, for each s € S.

When we fix the zero signal sq, there is a one-to-one correspondence between an element
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101

a) b)

Fig. 1. 8-PSK: a) natural labeling and b) Gray labeling.

9 € G and a signal g(so) € S, so that we will also write the labeling E[S, k] as E[G, k]
and the labeling function E(g(s0)) as E(g). We will also always assume E(0) = 0, where
0 is the identity of G and 0 is the k-bit all-zero label.

Lemma 1
Given a GU constellation S with generating group G, if a labeling E[G, k| satisfies the

following distance rule: !

du(E(9:), E(9;)) = wa(E(=g: +9;)) Vgir9; € G, (1)
the UBEP holds. This labeling will be called a bit geometrically uniform (BGU) labeling
\Y

(30))3

Proof:  Given any signal s; € S, for each signal pair (s;, s;) = (9i(s0), 95
9" (s0) = (—gi +

with dy(E(g:), E(g;)) = z, there exists a pair (so,s*), such that s* =

9;)(s0)

with dg(E(0), E(g*)) = wy(E(g*)) = z. We have:
du(E(9:), E(g;)) wr(E(g"))

P(b, sj|s;) = . P(sjs;) = k

P(s™|so) = P(b,s|se),

where the symbol error probability P(s;|s;) = P(s*|so) for the GU property. It follows
that
P(b]s;) = P(blso) = P(b) Vs; € S. n

'The additive notation will be used also for nonabelian groups. dy is the Hamming distance, and wy the
Hamming weight.
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The previous distance rule (1) is similar to the definition of signal sets matched to groups
of [6].

Let’s introduce the symmetry group ['(Hj) of the Hamming space Hy, defined as the
set of all symmetries of Hy, i.e., all the isometric permutations p : Hy — Hy, that preserve
the Hamming distance. A generating group for Hy is a 2*-element transitive subgroup of
[(Hy). This lemma follows directly from Theorem 5 of [6]:

Lemma 2
A 2*-signal GU constellation S with generating group G admits a BGU labeling E[G, k]
if and only if G is isomorphic to a generating group of Hj. \V4

Given I'(Hy), the binary group Z% is always isomorphic to a generating group of Hy.
However, BGU definition works for any generating group of Hy: the additive group prop-
erties of the elements of Z’; are not directly involved in the BGU definition, which only
concerns Hamming weights. This fact has consequences on the “linear” properties: in fact,

also constellations without generating groups isomorphic to Z¥ can admit BGU labelings.

Example 2

An 8-PSK constellation does not admit a generating group isomorphic to z‘;, but only two generating
groups isomorphic to Zg and Dy, the dihedral group of order eight [1]. However, it admits the BGU
Gray labeling depicted in Figure 1 b). In this case, there is an 8-element transitive subgroup of I'(Hj)
isomorphic to Dy, generated by the symmetries s, and s;, where:

¢ Sq is the order-two symmetry obtained by summing (001) and the permutation (2,1,3);
¢ sy 1s the order-four symmetry obtained by summing (101) and the permutation (2,1,3).

ITI. BGU ENCODERS FOR INFINITELY LONG TRELLIS CODES

In this section we will consider infinitely long time-invariant Euclidean-space GU codes
C C 8% over a GU constellation S, obtained by applying to the all-zero signal sequence
an infinitely long time-invariant group code C' C GZ over a generating group G of S.

Following the approach in [7}, a time-invariant group code C is identified, for each i € Z,
by a minimal state/output trellis section characterized by:

o the state group ¥ (of order |X});

« the input group F (of order 2* in this paper), i.e., the group of elements labeling the

edges exiting the zero state;

» the trellis section group 7, i.e., the group of all || - 2* edges (o}, g, ot); F will denote

the subgroup of 7 composed by the 2* edges exiting the zero state, and FJ- the coset

of F composed by the edges exiting the state o; € &.
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A time-invariant, invertible, minimal binary encoder £[C, k| maps binary information
sequences u € (Hy)? and code sequences ¢ € C. Every code sequence ¢ is generated by a
unique information sequence u = &£(c). At each i € Z, £ is characterized by:

« a state space in a one-to-one correspondence with ¥:

o a binary input set U/ = Hy;

« a mapping £ : T — Hy, that can be viewed as the set of |E| labelings E,[F}, k] for

0 <j<|Z] -1, i.e., one-to-one functions
EJ' : Fj > Hk

Every code sequence ¢ = {g(;) }:ez, corresponds to a unique edge sequence {(o, g, o' )iy biez
through 7; as a consequence, the encoder is effectively invertible, and every code se-
quence ¢ = {g(j}iez corresponds to a unique information sequence u = &(c), with
u = {u@;) tiez = {E(0,9,0")i)}iez. A minimal encoder is never catastrophic [7].

The definition of the UBEP for the encoders is the same as that for the constellations,

except that now infinitely long sequences are involved.

Definition 2
A binary encoder E[C, k| is said to satisfy the uniform bit error property (UBEP) if the
average bit error probability obtained with mazimum likelihood (ML) symbol sequence de-

coding does not depend on the transmitted sequence, i.e., P(b|c;) is the same for each

c; € C. It follows P(b) = P(blc;). A

Testing the BGU Hamming distance rule for a given encoder £ would involve all infinitely
long code sequences. However, every code sequence corresponds to a unique edge sequence

through 7' as a consequence, the distance rule can be tested directly on the 7" edges.

Lemma 3
If a binary encoder £[C, k] for a GU code C generated by C satisfies the following distance

rule:
dH(E(ti),E(tj)) = ’LUH(E(—ti + tj)) \Vlt,',tj 7. (2)

the UBEP holds. This encoder will be called a bit geometrically uniform (BGU) encoder.
\Y

Proof: Since every code sequence corresponds to a unique edge sequence, we have:

c = ...,(01,91,0'{)(,'),... Cy = ...,(0’2,_(]2,0';)(1'),...
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O

7

Fig. 2. Two-state group code over 8-PSK of Example 3.

and

—ci+ e =...,(—01 4 02,—g1 + g2, =01 + Th) (i), - - -

As a consequence, the encoder satisfies the distance rule of Lemma 1, extended to

infinite-length sequences:
di(E(c1)€(c2)) = du(€(0),E(~cy + ¢2)) Ve, cq € C.

Example 3
Consider the 8-PSK constellation of Figure 1 with generating group G = D4 and the 2-state group code
C over G depicted in Figure 2. The nonabelian dikedral group G’ = D4 = {0, 1, 2,3,4,5,6,7} has the

following multiplication table:

~N 3O B W N - O

~N O OV W NN~ Ol
N AN WO
Gt © W O = b =3 |
Lol SR B AN = T U )
W N = O ~ O Ot
[N e =2 B N B )
R =N OO W YO
S Ot O W oA N N~

We have:
T = {(0,0,0),(0,4,0),(0,2,1),(0,6,1),(1,1,0),(1,5,0),(1,3,1), (1,7, 1)}
F ={(0,0,0),(0,4,0),(0,2,1),(0,6,1)} and £, = (1,1,0) + £
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A minimal encoder for this code can be represented by this tabular form that describes

the mapping £2: T — Hy, via the two labelings Eq : F' < Hy and E, : [}, = H,.

T
H, | F F

00 0,00 | 1,1,0
11 (04,0 1,50
01 1021|131
10 [0,6,11,7,1

The labeling functions are determined by the row correspondences. For example we
have Ey(0,2,1) = 01, and E1(1,5,0) = 11. This encoder is BGU because Condition 2 of

Lemma 3 is satisfied. o

The previous BGU encoder definition has an obvious consequence on the signals labeling

the edges exiting the zero-state:

Lemma 4

For a BGU encoder, the set of signals Sy = F(sp), labeling the edges exiting the zero
state, is a GU constellation generated by the input ‘group F that admits a BGU labeling
E[F,k]; F is isomorphic to a generating group of Hy. \V4

Any other set S;, composed by all signals labeling the edges exiting o;, 1s generated by
a coset of F' and is congruent to Sp. This suggests that it must have a binary labeling
“congruent” to that of S;. For any o; € T, denote by a; € F; the edge exiting from oj
and labeled by the all-zero k-bit label: E;(a;) = 0. Let A be the set of all these |Z| edges.

The following lemma yields necessary and sufficient conditions for BGU encoders:

Lemma 5

An encoder £ is BGU if and only if these conditions are satisfied:

1. Ey is a BGU labeling Eo[F, k] for So:

2. E;(f + a;) = Eo(f), for all f e F, and for all a; € A.

3. A is a subgroup of T;

4. for all a; € A, wy(Eo(f)) = wi(Eo(f')), with f' = —a;+ [+ a;.

Condition 4 is automatically verified when 7 is the direct product 7 = F x A, i.e., when

G is abelian, or, when G is not abelian and A is a normal subgroup of 7. \V/

Conditions of Lemma 5 allow a simplified test on the trellis section to determine if an

encoder is BGU or not.
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OUTER CODE INNER CODE
INTERLEAVER

a bits b bit b bits signal s
C o IS I its C :

BINARY CONVOLUTIONAL TCM ENCODER
ENCODER OVER S
RATE a/b

CONCATENATED CODE C

Fig. 3. Serially concatenated trellis coded modulation.

IV. SERIALLY CONCATENATED TRELLIS CODED MODULATION

Serial concatenation of an outer binary convolutional encoder with an inner trellis en-
coder over a multidimensional Euclidean constellation through an interleaver, and a suit-
able iterative decoding algorithm were proposed in [5] with some examples of codes with
very good performance. The basic structure of serially concatenated trellis coded mod-
ulation (SCTCM) is shown in Fig. 3. The outer binary convolutional encoder has rate
a/(a + 1); the output bits are interleaved and passed to a TCM encoder defined over
a 2L-dimensional constellation with a spectral efficiency of (a + 1)/L bps/Hz (with ideal
Nyquist pulse shaping). The spectral efficiency of the overall SCTCM is then a/L bps/Hz.

A global design of the overall SCTCM is (and is likely to remain) an open problem.
In [5], extending the approach introduced in [4] for binary encoders, the design approach
was based on the assumption of a large uniform interleaver, and led to the requirement of
maximizing the effective free Euclidean distance of the inner TCM code C, defined as the
minimum distance between code sequences generated by information sequences that differ
only by two bits:

dret = mindg(ci,c) for all ci,c; €C with dy(E(cy), E(c;)) =2 (3)

Ci1,C2

where dg means Euclidean distance. The inner TCM encoder must also be recursive, i.e.,
no finite-weight code sequence must be generated by an input sequence of weight one.
According to the definition, the computation of di g requires in general testing of all

possible pairs (cy, c;). However, if the inner TCM encoder is BGU. we can choose as input
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sequence the all-zero sequence and compute di o as
df et = mcin wg(c) for all ce€C with wy(E(c)) =2 (4)

where by wg(c) we denote the Euclidean distance between the code sequence ¢ and the
all-zero sequence. The great simplification involved in passing from (3) to (4) is apparent.
Moreover, since the search for good SCTCM codes also involved maximization of minirnum
Euclidean distance for pairs of input sequences with Hamming distances larger than 2,
typically up to 6, the reduction of the computational burden involved in the search becomes
dramatic.

Moreover, analytical upper bounds to the ML bit error probability performance for BGU
SCTCM codes can be obtained as a straightforward extension of the technique developed
in [4].

A. A search for good constituent TCM encoders for the construction of SCTCM

In [5] an SCTCM with spectral efficiency of 2 bps/Hz was obtained using a 2-state TCM
inner encoder defined on a 2x8-PSK constellation with spectral efficiency 2.5 bps/Hz. The
construction of the inner TCM encoder was done by “hand”, based on heuristic consid-
erations and on a partial search based on the maximization of the minimum Euclidean
distance of code sequences generated by information sequences with Hamming distance 2,
i.e., by applying definition (3). The best 2-state encoder found had ds .q = 1.76.

We have repeated this search, starting from the best 2-state 2.5 bps/Hz GU TCM codes
over 2x8-PSK constellation of [8] (the same code used in [5]), and have constructed all
possible BGU recursive encoders for this code. For each encoder we have computed dy .
(this computation is highly simplified for encoders possessing the BGU properties because
definition (4) can be applied), and have selected the best one that yielded a df .q = 3.76,
much larger than the one [5].

As for the search complexity, for this 2-state code with 32 edges leaving each state,
we have (32!)? different minimal encoders. Restricting the search to BGU encoders, we
first have to assign the encoder function to the zero-state, i.e., look for a BGU mapper
Eo(F, k) of the input group. For this code, we have the 32-element group F = Gg;), that
is described in [8] as GY}) = Dih(Z4 x Z,). We are interested in all possible BGU labeling
for this group (or, more precisely, for the 32-element subset of 2x8-PSK generated by F),
i.e., all different transitive subgroups of I'(Hs) isomorphic to Ggg). This can be easily done
by considering subgroups of F of increasing length and assigning a BGU labeling to them.

Only a representative encoder must be retained into the class of “equivalent” labelings,
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i.e. that differ only for coordinate permutations. The labeling of the second state must be
congruent to that of the zero state, and the element labeled by the zero label must have
order two, so that all possible BGU encoders can be easily constructed from the BGU

labeling of F', by verifying the conditions of Lemma 5.

Overall, we have found about three hundred distinct BGU recursive encoders for this
code. Among those encoders, we have selected the one for which the pairs (d;, N;) are
optimized (d; maximized and N; minimized), from 7 = 2 up to 7 = 10. The distance d; is
defined as d; = ming, ¢, dg(c1,c;) for all c,c; € C
with  dg(E(c1), E(cz)) = i. The best BGU encoder found can be implemented by the
linear shift register structure depicted in Figure 4, followed by a natural mapping (see

Fig. 1 a) of the two binary triplets o, 21,2, and yo,y1,y2 onto the 2x8-PSK signals.

The analytical upper bounds to the bit error probability, evaluated through an extension
of the technique described in [4] for four SCTCMs of spectral efficiency 2 bps/Hz employing
as outer code a binary convolutional code of rate 4/5, 2-states, and minimum distance 2,
a uniform interleaver [4] with length N = 125, or N = 1250, and as inner encoders four
different TCM encoders of spectral efficiency 2.5 bps/Hz over a 2x8-PSK are shown in
Fig. 5. Curve A referes to the best encoder found through the search, that sequentially
optimizes (d;, NV;), for ¢ = 2,...,10, and is described in Fig. 4; curve B represents the
performance of the code of [5]; curve C pertains to a second encoder found that sequentially
maximizes d;, for ¢ = 2,...,10, without considering the multiplicities; curve D referes to
a third encoder obtained through the search whose distance and multiplicities seem a
compromise between code A and C. From the curves, we argue that code B of [5] is the

worst among the 4 codes, whereas code A and C have essentially the same performance.

The simulation results for the 4 codes, obtained through the iterative decoding algorithm
described in [5], with an interleaver length N = 1250 corresponding to an input block of
1000 bits and 8 iterations of the algorithm, are reported in Fig. 6. Code A is the best, and
no errors are found for E,/Ny above 5.5 dB. The poorest behavior is the one yielded by
code B of [5], whereas the other two codes stay in between. Both analytical and simulation
results strongly support the practical relevance of the systematic code search toward the
“ad hoc” design procedure adopted in [5] to obtain code B. The obtained result are at 2.6
dB from capacity of 8-PSK (2 bit/s per signal) with a relatively small input delay (1000

bits) and very low complexity (two 2-state encoders).
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Fig. 4. Shift register realization of the best 2-state BGU TCM encoder.

V. CONCLUSION

The input/output encoder relationships between information and coded sequences are
crucial for some applications. For BGU encoders, introduced and characterized in this
paper, the bit error probability does not depend on the transmitted sequence, a property
that can be useful for the analysis and design. As an example, we have shown how the
BGU encoder construction can be applied to the design of serially concatenated trellis

coded modulation.
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Fig. 6. Simulation results for four SCTCM schemes of spectral efficiency 2 bps/Hz employing an interleaver
yielding an input delay N = 1000 and 8 iterations.
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